
Projen: The next step in
project configuration

WHITE
 PAPER.

How automated project structures lead to more efficient
development teams and more consistent codebases

March 2025

Introduction	 � 3

1. 	From CDK to Projen: A natural evolution 	� 5

	 The practical impact� 6

2. 	Projen in practice	� 8

	 Managed versus unmanaged files� 9

3. 	Configuring configuration	� 11

4. 	From theory to practice: Implementing Projen 	� 12

5. 	Looking into the future 	� 14

6. 	Steps to get started 	� 15

	 An investment in the future� 15

7. 	Key lessons from this whitepaper	� 16

8. 	Recommended resources for further study	� 17

About inQdo� 18

�

CONTENTS.

3

Introduction
“Just setting up a new project.” This seemingly
simple task often grows into a complex challenge
in modern development teams. This is not because
starting a project itself is complicated but because
the proliferation of different configurations, tools,
and best practices makes keeping projects consistent
increasingly difficult.

Project configuration is a term rarely heard
outside technical circles, but it’s a crucial
component of every successful project
within software development. It forms the
foundation upon which software is built
and maintained, and its quality directly
impacts team efficiency and collaboration.
This task often remains manageable
in smaller teams with just a handful of
projects. But what if you’re working with
dozens or even hundreds of projects that all
need their configurations?

This isn’t a hypothetical scenario for
development teams working with more
than 200 repositories—it’s a daily reality.
Each project within those repositories
requires unique configuration files
such as *package.json*, *tsconfig.json*,
.eslintrc.json, *.prettierrc*, *.gitignore*,
and CI/CD workflows. Adjusting these f iles
often happens manually, which is time-
consuming and increases the risk of human
error. A small adjustment to linting rules

means manually updating dozens or even
hundreds of repositories. Implementing a
new security best practice? That exercise
takes days or even weeks.

This problem only grows as teams expand
and projects become more complex.
Inconsistent configurations can lead to:

•	 Time-consuming code reviews focusing
on style and formatting issues rather
than functionality

•	 Increased technical debt, as manual
f ixes are often applied ad hoc

•	 Frustration within teams, as the lack
of standardisation complicates the
onboarding of new team members

This problem only grows as
teams expand and projects
become more complex.

4

Traditional tools versus Projen
Traditional project configuration tools like
Cookiecutter and GitHub templates have
attempted to address these challenges. They
often provide a good start by generating a
project template, but that’s where it ends.
Once the project is running, it’s up to the
team to manually implement and track
changes. CDK-init has this same limitation.

This leads to situations where configuration
files quickly fall out of sync. A template that
once contained all necessary components
becomes irrelevant months later because
best practices have changed. This makes
maintaining consistency almost impossible.

This is where Projen comes in. Projen
isn’t just a tool; it’s a philosophy. It treats
configuration as code, meaning project
rules and settings are centrally managed
and automated. By creating a single source
of truth in the form of a projenrc.ts f ile,
Projen ensures consistent, up-to-date
configurations in every project.

This leads to situations
where configuration files
quickly fall out of sync.

What distinguishes Projen from other
tools is the combination of simplicity and
power. It provides a streamlined way to start
projects and a mechanism to manage and
update them continuously. With Projen,
you no longer need to worry about manual
f ixes or forgotten updates. Everything is
automatically generated and managed
based on the latest standards.

5

The parallel between CDK and
Projen is striking. Both tools
abstract complex processes and
work with a modular hierarchy
that is adaptable and scalable.
For CDK, these are constructs
that lead to CloudFormation
resources; for Projen, they are
components that generate files.

From CDK to Projen:
A natural evolution

1

Understanding the power of Projen helps to look at a concept many development teams
are already familiar with: AWS CDK (Cloud Development Kit). Both tools were conceived
by the same developer: Elad Ben-Israel. Projen and AWS CDK use the ‘construct’ library,
enabling a modular hierarchy. They also utilise JSII, allowing project templates to be
used in other programming languages. This enables teams to work at a higher level of
abstraction while technical details are handled automatically.

AWS-CDK
AWS CDK works with a clear hierarchy:
•	 App forms the base and contains one or more stacks
•	 Stack contains one or more constructs
•	 Constructs ultimately lead to concrete

CloudFormation resources

Figure 2.1 >
Schematic
representation
of AWS CDK

6

Projen
Projen follows a similar concept:
•	 Project forms the base and can contain

sub-projects
•	 Sub-projects have components
•	 Components ultimately generate concrete

configuration files

This parallel is no coincidence. Just as
CDK frees developers from manually
writing CloudFormation templates,
Projen frees teams from manually
managing configuration files. It elevates
project configuration to a higher level of
abstraction, where it’s easier to manage
and maintain. With each project started
using Projen, a central projenrc.ts f ile is
generated. This defines the complete
project configuration, from dependencies

and linting rules to build scripts and
workflows.

The practical impact
In practice, this approach directly solves
several persistent problems that many
development teams experience:

•	 Consistency across projects
Managing more than 200 repositories
means that even small changes, such
as adjusting a linting rule, can have
an enormous impact. By treating
configuration as code, such updates
become a matter of minutes rather than
days or weeks.

•	 Simpler collaboration
Code reviews become more effective

< Figure 2.2
Schematic
representation
of Projen

7

because teams can concentrate on
functionality rather than formatting or
configuration. A pull request shows only
the relevant changes, not the noise of
inconsistent configurations.

•	 Faster onboarding
New team members, or developers
temporarily joining a project, can get
started immediately. With one command,
they have a fully configured development
environment that meets all team
standards:

< Figure 2.3
Difference in
command
prompt
between CDK
and Projen

•	 Automated security
Security tools like cdk-nag can be
integrated by default. This ensures that
security guidelines are consistently
applied across all projects.

8

One of Projen’s greatest strengths is
its ability to generate and maintain
configuration files automatically.
Where developers traditionally spend
considerable time manually creating and
managing project configurations, Projen
offers an automated solution that saves
time and guarantees consistency.

Take, for example, setting up a CDK
project. Without Projen, a developer must
manually create and configure a series
of f iles. This includes essential f iles like
.gitignore, package.json, and tsconfig.json,
but also more complex components such
as CI/CD workflows for GitHub Actions.
The process requires careful attention,
as a small error can lead to inconsistent
configurations or implementation
problems.

With Projen, this complex task is
reduced to a single command. By simply
executing:

projen new awscdk-app-ts

a fully configured project environment is
automatically generated. Within seconds,
the developer has a project structure
that meets the team’s predefined
standards.

The generated project structure looks
like this:

my-project/
	 .gitignore
	 package.json
	 tsconfig.json
	 .eslintrc.json
	 .projen/
	 workflows/
	 src/

Each file is automatically aligned with the
set standards, from linting and formatting
rules to workflow configurations. What
was previously a time-consuming and
error-prone process has become an
efficient, streamlined step in development
teams’ daily practice.

Projen in practice
2

Projen is more than a theoretical concept; it’s
a tool that has proven to streamline processes,
save time, and improve work quality. It becomes
clear how teams, such as inQdo, use it to solve
daily challenges.

9

< Figure 3.1
Central
configuration
within Projen:
Projenrc.ts

‘unmanaged’ f iles. This fundamental
principle determines how configurations
are managed and kept up-to-date.

Managed files: Automatic
and consistent
Managed files are fully managed by Projen
and regenerated with each update. These
include configuration files for:

•	 Linting and code formatting
•	 Build processes
•	 CI/CD workflows
•	 Dependency management

Projen gives development teams back time
and provides a solid foundation to build
upon. By managing configurations centrally
and keeping them automatically up-to-
date, developers gain the freedom to focus
on what truly matters: building innovative
solutions.

Managed versus
unmanaged files

What truly distinguishes Projen from other
solutions is the concept of ‘managed’ and

< Figure 3.2
Managed files
are managed by
Projen

10

These files are identifiable by a special
Projen marking indicating they are
automatically managed. Manual changes
to these files are overwritten—a deliberate
choice that guarantees consistency.

Unmanaged files:
Flexibility where needed
Not all files need strict control. Unmanaged
files are generated once as a starting point
and can then be freely modified. This is
ideal for:

•	 Example code and templates
•	 Project-specific implementations
•	 Documentation
•	 Custom configurations

Example:
Suppose you have a .gitignore
file containing rules for
ignoring files that are pushed
to Version Control. Projen
ensures these rules always stay
up-to-date according to team
standards. Manual additions
to the file are ignored, but
these should be added via the
projenrc.ts instead.

11

The difference with Projen becomes clear
when we look at how teams handle, for
example, a new security best practice. With
traditional solutions, this would mean:

1.	 Updating the template or script for new
projects

2.	 Making an inventory of all existing projects
that need modification

3.	 Manually going through all repositories to
implement the change

4.	Conducting code reviews on each change
5.	 Hoping no project has been overlooked

With Projen, however, the new practice
is added to the central configuration.
Because it’s Configuration-as-Code,
the configuration of the configuration
becomes manageable in version control
such as Git/GitHub. This creates a history
of changes and an overview of who
modified what.

Moreover, the project template is made
available as a ‘package’. When starting
a new project, the package can be
downloaded, and the new project depends
on this package. This means that when
the package content changes (the
configuration), the project is automatically
updated to the latest version of the project
template by updating the package.
This happens with one command (npm
update), which implements all changes.
The execution of package updates can also
be automated.

Projen changes are automatically and
consistently implemented, without manual
work and with minimal risk of errors. It goes
beyond generating an initial setup and
offers a continuous management model.

Configuring configuration
3

What makes Projen different?
The fundamental limitation of traditional
solutions is that they treat configuration
management as a one-time action—setting up
a project—rather than a continuous process. In
practice, a development team constantly
evolves. New security patches must be applied,
coding standards must be tightened, and
dependencies need updating. Without
automated management, this becomes an
almost impossible task.

Traditional tools Projen

Focuses on initial project setup Manages projects throughout their entire lifecycle

Manual updates for configurations Automatic updates via managed files

Limited to one-time templates Use of reusable components

No integrated dependency management Complete dependency management within projenrc.ts

12

A good example of this approach is how
an inQdo team experimented with Projen
in a new serverless project. This project
was small enough to oversee but complex
enough to test Projen’s capabilities. The
initial results were promising: where the
team normally spent hours setting up and
configuring a development environment,
they now had a fully configured project
within minutes.

But the real value became clear when an
update to the linting rules was needed. This
situation regularly occurs in practice: a team
discovers a better way to structure code and
wants to implement this standard across all
projects. Without Projen, this would mean
manually adjusting each project. With
Projen, it was a matter of modifying the rule
in the central configuration file and letting
the change propagate automatically.

Benefits of Projen
This experience led to a broader insight:
Projen isn’t just a tool for project
configuration; it’s a way to democratise
development standards. Treating

configuration as code makes it possible to
build best practices directly into the project
structure.

For instance, new team members no
longer need to wade through extensive
documentation to understand how a project
should be set up—the standards are baked
into the configuration. Previously, it took days
to get a new developer fully productive. They
had to delve into various configuration files,
set up local development environments, and
understand project-specific settings. Now it’s
a matter of executing one command to have
a fully configured development environment
that meets all team standards.

Another example is the integration of security
tools. By including CDK-nag as standard in
the Projen configuration, security checks
become a natural part of the development
process. The tool cannot simply be disabled
or bypassed, ensuring consistent security
standards across all projects. However, even
within existing projects, Projen ensures
that security can be implemented more
easily. Take, for example, a recent project

From theory to practice:
Implementing Projen

4

The move to Projen requires a thoughtful approach. The reality of a
development team with more than 200 repositories is that you can’t change
everything at once. Ingrained working methods, existing configurations, and
ongoing projects require a gradual transition.

13

where a critical security update needed
to be implemented across all repositories.
Where this would previously have taken an
entire sprint, it now became a streamlined
operation completed within a day. Not only
was this more efficient, but it also eliminated
the risk of accidentally skipping a repository.

Practice also shows that teams need different
levels of automation. Some projects require
strict control over every configuration
setting, while others need more flexibility.
Projen supports this through the distinction
between managed and unmanaged files.
A good example of this is the treatment of
GitHub workflows: the basic workflows for
testing and deployment are automatically
generated and updated, while teams
retain the freedom to add project-specific
workflows.

Configuration management automation
has had an unexpected but positive effect
on code review efficiency. In traditional
development environments, inconsistent
configurations mean that important code
changes are masked by superficial formatting
differences. It’s comparable to reviewing a
document where not only the content has
been modified, but the formatting has also
been randomly changed—it becomes almost
impossible to identify the actual substantive
changes. Projen eliminates this problem by
enforcing consistent formatting. This makes
functional changes, such as new features or
security patches, immediately visible in code
reviews. Teams can concentrate on what
truly matters: the logic and functionality of
the code. This increased visibility of relevant
changes speeds up the review process
and improves the quality of the reviews
themselves.

Common pitfalls and how to
avoid them

1. Relying on automation without
understanding
Challenge: Team members fully trust
Projen without understanding how it
works.
Solution: Combine automation with
training and documentation so team
members understand what Projen
does and how they can adapt it.

2. Overwhelming complexity
at the start
Challenge: Implementing too many
standards at once can be confusing.
Solution: Start with a simple
configuration and add complexity
gradually based on feedback.

3. Insufficient team communication
Challenge: Not everyone in the team
understands the benefits of Projen.
Solution: Regularly discuss the
impact of Projen and share successes,
such as time savings and improved
consistency.

14

Trends driving this change:
•	 Scalability: The number of repositories and

projects within organisations is increasing,
and consistency is needed.

•	 Automation: Tools such as CI/CD and AI
support developers but require standardised
configurations to perform optimally.

•	 Team diversity: Development teams
increasingly consist of people with varying
technical expertise, increasing the need for
user-friendly tools.

Projen plays a key role in this landscape
by treating configuration as code and
solving a fundamental problem in software
development.

Automation is a core component of modern
software development. Developers rely
on a wide range of automated tools, from
generating builds to executing tests and
deployments. Projen seamlessly aligns with
this trend by automating configurations.
With the rise of AI tools such as GitHub
Copilot and other code assistants, having
clear and consistent configurations becomes
increasingly important.

An interesting development is Projen’s
integration with modern development

tools. Treating configuration as code
makes it possible to use the same tools for
configuration management as for software
development. This means, for example,
that teams can benefit from IntelliSense
and type-checking when modifying project
configurations—a functionality that was
previously only available for application code.

The next step in modern software
development
The challenges of project configuration aren’t
unique. Every growing development team
recognises the struggle with inconsistent
configurations, time-consuming updates, and
difficult onboarding of new team members.
What is unique is how Projen tackles these
problems. Treating project configuration as
code transforms a traditional pain point into a
strategic advantage.

Practice shows that the impact goes
beyond just efficiency. Teams experience
a fundamental shift in how they think
about project configuration. It’s no longer
a necessary evil but an integral part of the
development workflow. This mindset shift
leads to better code, faster development
cycles, and more focus on what truly matters:
building valuable software

Looking into the future
5

Software development is in constant evolution. Teams face
increasing complexity, rapid technological changes, and growing
demand for standardised processes. Once a simple task, project
configuration has become a strategic challenge.

15

During this phase, focus particularly on:
•	 Defining team standards that are truly

valuable
•	 Identifying configurations that benefit most

from automation
•	 Gathering feedback from team members

about what works and what doesn’t

You can expand to other projects once the
first project is successfully running with
Projen. Experience shows that teams are
often so convinced of the benefits at this
point that they themselves ask to migrate
more projects.

An investment in the future

The future of software development lies in
automation and standardisation. Tools like
Projen play a crucial role in this. By treating
project configuration as a f irst-class citizen
in the development process, teams lay a
solid foundation for future growth and
innovation.

The integration with modern development
tools and the ability to manage
configurations programmatically prepare

Projen for the next wave of innovations
in software development. Whether it’s
AI assistants, new security requirements,
or yet unknown technological
developments—a structured, code-
first approach to project configuration
ensures teams are ready for whatever
the future brings.

Steps to get started
6

For teams considering the switch to Projen, a
phased approach is essential. Start small, with one
project where the team has room to experiment.
This can be a new or existing project due for a
refresh. The most important thing is that the team
has the freedom to learn and adapt.

Start today!
Want to know more about
how Projen can improve your
development processes?

Contact our experts:
info@inqdo.com
+31 85 2011161
inQdo.com

Start simplifying your project
configuration today and
experience the power of Projen for
yourself!

16

1. Why Projen?

Projen solves fundamental problems that
other tools like Cookiecutter and GitHub
Templates don’t address:
•	 It provides continuous management

rather than just initial setups
•	 It eliminates manual updates by

managing configurations centrally
•	 It increases productivity and reduces

errors through standardisation

2. How does Projen work?

Projen uses a centralised configuration
file (projenrc.ts) to ensure consistency.
This f ile acts as the source of truth for
each project and automates:
•	 The creation and updating of f iles such

as .gitignore, package.json, and CI/CD
workflows

•	 The integration of security tools like
cdk-nag

•	 The implementation of team standards
for linting and formatting

3. Practical experiences with Projen

At organisations like inQdo, Projen has
proven valuable by:
•	 Saving time when updating

configurations
•	 Accelerating the onboarding of new

team members
•	 Improving collaboration within teams

by maintaining consistent standards

Key lessons from this
whitepaper

7

17

Official Projen documentation:
projen.io
Find detailed guides and examples here.

GitHub repository:
github.com/projen/projen
View the codebase, open issues, and
latest releases.

Community discussions:
Join forums and communities to
exchange experiences and discover best
practices.

Recommended resources
for further study

8

https://projen.io/
https://github.com/projen/projen

inQdo is an AWS Advanced Consulting Partner
specialising in cloud solutions and digital transformation.

With a team of experienced cloud developers, we help
organisations implement innovative solutions that create

business value.

info@inqdo.com
 +31 85 2011161

inQdo
Coltbaan 1-19

3439 NG Nieuwegein

©2024 inQdo. All rights reserved. Reproduction, distribution or use of the
contents of this whitepaper, in whole or in part, without prior written

permission from inQdo is strictly prohibited.

About inQdo

mailto:info%40inqdo.com%20?subject=

